The group of diffeomorphisms of S={zec|121=1}, denoted by Diff(S'), is infinite dimensional Lie group. Corresponding Lie algebra: $A = \left\{ f(z) \frac{d}{dz} \middle| f(z) \in \mathbb{C}[z, z^{-1}] \right\}$ where C[Z, Z'] is Calgebra of Laurent polynomials. Lie bracket: $\left[f(z) \frac{d}{dz}, g(z) \frac{d}{dz} \right] = \begin{cases} f(z)g'(z) - g(z)f'(z) \\ \frac{d}{dz} \end{cases}$ Basis generators: $L_n = -2^{n+1} \frac{d}{d^2}, \quad n \in \mathbb{Z}$ with restriction to S' given by: $L_n = ie^{in\Theta} \frac{\partial}{\partial e^{i}}, \quad z = e^{i\Theta}$ Commutation relation: [Lm, Ln] = (m-n) Lm+n La generates infinitesimal transformations of C\{0} given by 4+(2) = 2-t2"+1 Lo, L, , L_, extend to CP': $[L_{0}, L_{1}] = -L_{1}, [L_{0}, L_{-1}] = L_{-1}, [L_{1}, L_{-1}] = 2L_{0}$ \rightarrow generate $sl_2(C)$

$$\frac{\Pr_{oposition 2:}}{H^{2}(A, C) \cong C}$$

$$\frac{H^{2}(A, C) \cong C}{has a basis represented by the 2-cocycle}{\alpha := \omega(f \frac{d}{d^{2}}, g \frac{d}{d^{2}}) = \frac{1}{12} \operatorname{Res}_{t=0}(f \frac{d}{g} de)$$

$$\frac{\Pr_{oof}}{P_{roof}}$$

$$\frac{2et \alpha be a 2-\infty eycle of A. Put \alpha_{p,q} = \alpha(L_{P}L_{q})}{\sum \min_{j=1}^{poof} f^{p_{op}}} \alpha is invariant under rotation$$

$$also \alpha_{p,q} = 0 \quad if \quad p+q \neq 0$$

$$set \alpha_{p} := \alpha_{p,-p} \longrightarrow 2-cycle condition:$$

$$(p+2q) \alpha_{q} - (2p+q) \alpha_{q} = (p-q) \alpha_{p+q}$$

$$(exercise)$$

$$\implies \alpha_{p} = \lambda p^{3} + \alpha p$$
We can get αp from
$$d_{j}S(L_{p}) = jS(L_{p}, L_{-p}I) = \frac{2p}{S}(L_{o})$$

$$\stackrel{by setting}{\longrightarrow} \alpha := \frac{1}{2} J(L_{o})$$

$$\stackrel{cocycle}{\longrightarrow} \alpha = \frac{1}{12}, \quad \alpha = -\frac{1}{12}$$

Recall:
Vet M be a smooth manifold and let
L be a complex line bundle over M.
Fix connection
$$\nabla$$
 on L. Then
 $\nabla = d - 2\overline{v} \overline{v} - \overline{v} \chi_{v}$ locally on UCM
 $\rightarrow dx_{v_{A}}$ defines a global 2-form
for open covering {U_{A}}, NeA of M
 $\rightarrow first$ Chern form of $\nabla \cdot c_{i}(\nabla)$
 $c_{i}(\nabla)$ defines a class in H²(M, R) in
the image of H²(M, Z) \rightarrow first Chern class
of L.
Now:
Suppose M is simply connected and
fix a base point $x \in M$.
Xet $\gamma \colon [0,1] \rightarrow M$ be a smooth loop with
 $\gamma(o) = \gamma(1) = x$.
Then $\gamma^{*}(L) \rightarrow complex$ line bundle
on $[0,1]$ with connection $\gamma^{*}\nabla$.
"horizontal section" $s \colon (\gamma^{*}\nabla)s = 0$
For u in fibre of $\gamma^{*}L$ at 0 select section
 $s s.t. s(o) = u$.
We have dic D CM with $\partial D = \gamma$
(M simply connected)

Proposition 3:
Yet M be a simply connected smooth
manifold and
$$\omega$$
 a closed 2-form on M
with $\omega \in \text{Imi}$ where
 $i: H^2(M,\mathbb{Z}) \rightarrow H^2(M,\mathbb{R})$
Then $\exists \text{ complex line bundle } L \text{ over } M$
and connection $\nabla \text{ on } L \text{ s.t.}$
 $G_i(\nabla) = \omega$

Proof:
Denote by
$$P_{x}(M)$$
 the set of smooth paths
 $p: [0,1] \rightarrow M$ with $p(0) = x_{0}$
equivalence relation n on $P_{x}(M) \times C$:
 $(P_{1}W) \sim (q_{1}W)$ iff
 $p(1) = q(1)$ and $v = u \exp(2\pi \Pi \int w)$
independent
of D as
 $v \in H^{2}(w)$
 $T : L \rightarrow M$ by $\overline{v}(P_{1}W) = p(1)$
 $\rightarrow connection \nabla$ of L has holonomy
 $exp(2\pi \Pi \prod w)$ around loops γ
 $\rightarrow C_{1}(\nabla) = w$
Example:
consider $M = LG_{C}$ and $w \in H^{2}(LG_{C}, \mathbb{Z})$
Take $G = SU(2)$ and $g_{C} = S_{X}(C)$
Define for $X \in SU(2)$ 1-form $m = X' dX$
("Maurev-Cartan form") of Lie group SU(2).

Then
$$abla - \frac{1}{24\pi^2} \operatorname{Tr}(mnmn)$$
 is
generator of $H^2(SU(2), \mathbb{Z})$. $\forall et \phi: LG \times S' \rightarrow G$
be given by $\phi(y, z) = \mathcal{J}(z)$. Define
 $\omega = -\int_{S_1} \phi^* \mathcal{D}$
It can be shown that $H^2(LG, \mathbb{Z}) \cong \mathbb{Z}$
with generator ω . Associated complex
line bundle L is called "fundamental
line bundle L is called "fundamental
line bundle "over LGc.
S 2 Representations of affine tie algebras
 $\forall et g be a complex tie algebra and$
 $\forall a complex vector space.$
Definition:
We call a linear map $\rho: g \rightarrow \operatorname{End}(V)$
s.t.
 $\rho([X, Y]) = \rho(X)\rho(Y) - \rho(Y)\rho(X)$
 $\forall X, Y \in g$ a "linear vepresentation" of g a.V.
We will also simply write X v for $\rho(X)v$.
Focus on $g = Sl_2(\mathbb{C}) \rightarrow \hat{g} = \hat{A}$,
 $\forall ie -algebra: [H, E] = 2E, [H, F] = -2F, [E, F] = H$
 $\langle H, H \rangle = \lambda, \langle E, F \rangle = 1, \langle H, E \rangle = 0 = \langle H, F \rangle$
Denote by $\{I_n\}$ orthonormal basis with

C acts as scalar on
$$V_A$$
 s.t.
 $C u_j = 2j(j^{+1})$
Next: Representations of affine Xie algebras
Denote by
 $A_+ C C((t))$: the subalgebra $\sum_{N>0} a_n t^n$
 A_- : sb. alg. $\sum_{n \leq 0} a_n t^n$
 $Define
 $N_+ = [g \otimes A_+] \oplus CE_1$
 $N_0 = CH \oplus Ce_1$
 $M_0 = CH \oplus Ce_1$
 $N_0 = CH \oplus Ce_1$
 $M_0 = CH \oplus Ce_1$
 $N_0 = Ce_1 \oplus Ce_1$
 $M_0 \oplus N_0 \oplus N_1$
 $M_0 = O_1 \oplus Ce_1$
 $M_0 \oplus Ce_1$$